/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /*! Discrete Hedging */ /* This example computes profit and loss of a discrete interval hedging strategy and compares with the results of Derman & Kamal's (Goldman Sachs Equity Derivatives Research) Research Note: "When You Cannot Hedge Continuously: The Corrections to Black-Scholes" http://www.ederman.com/emanuelderman/GSQSpapers/when_you_cannot_hedge.pdf Suppose an option hedger sells an European option and receives the Black-Scholes value as the options premium. Then he follows a Black-Scholes hedging strategy, rehedging at discrete, evenly spaced time intervals as the underlying stock changes. At expiration, the hedger delivers the option payoff to the option holder, and unwinds the hedge. We are interested in understanding the final profit or loss of this strategy. If the hedger had followed the exact Black-Scholes replication strategy, re-hedging continuously as the underlying stock evolved towards its final value at expiration, then, no matter what path the stock took, the final P&L would be exactly zero. When the replication strategy deviates from the exact Black-Scholes method, the final P&L may deviate from zero. This deviation is called the replication error. When the hedger rebalances at discrete rather than continuous intervals, the hedge is imperfect and the replication is inexact. The more often hedging occurs, the smaller the replication error. We examine the range of possibilities, computing the replication error. */ // the only header you need to use QuantLib #include <ql/quantlib.hpp> #ifdef BOOST_MSVC /* Uncomment the following lines to unmask floating-point exceptions. Warning: unpredictable results can arise... See http://www.wilmott.com/messageview.cfm?catid=10&threadid=9481 */ // #include <float.h> // namespace { unsigned int u = _controlfp(_EM_INEXACT, _MCW_EM); } #endif #include <boost/timer.hpp> #include <iostream> #include <iomanip> using namespace QuantLib; #ifdef BOOST_MSVC # ifdef QL_ENABLE_THREAD_SAFE_OBSERVER_PATTERN # include <ql/auto_link.hpp> # define BOOST_LIB_NAME boost_system # include <boost/config/auto_link.hpp> # undef BOOST_LIB_NAME # define BOOST_LIB_NAME boost_thread # include <boost/config/auto_link.hpp> # undef BOOST_LIB_NAME # endif #endif #if defined(QL_ENABLE_SESSIONS) namespace QuantLib { Integer sessionId() { return 0; } } #endif /* The ReplicationError class carries out Monte Carlo simulations to evaluate the outcome (the replication error) of the discrete hedging strategy over different, randomly generated scenarios of future stock price evolution. */ class ReplicationError { public: ReplicationError(Option::Type type, Time maturity, Real strike, Real s0, Volatility sigma, Rate r) : maturity_(maturity), payoff_(type, strike), s0_(s0), sigma_(sigma), r_(r) { // value of the option DiscountFactor rDiscount = std::exp(-r_*maturity_); DiscountFactor qDiscount = 1.0; Real forward = s0_*qDiscount/rDiscount; Real stdDev = std::sqrt(sigma_*sigma_*maturity_); boost::shared_ptr<StrikedTypePayoff> payoff( new PlainVanillaPayoff(payoff_)); BlackCalculator black(payoff,forward,stdDev,rDiscount); std::cout << "Option value: " << black.value() << std::endl; // store option's vega, since Derman and Kamal's formula needs it vega_ = black.vega(maturity_); std::cout << std::endl; std::cout << std::setw(8) << " " << " | " << std::setw(8) << " " << " | " << std::setw(8) << "P&L" << " | " << std::setw(8) << "P&L" << " | " << std::setw(12) << "Derman&Kamal" << " | " << std::setw(8) << "P&L" << " | " << std::setw(8) << "P&L" << std::endl; std::cout << std::setw(8) << "samples" << " | " << std::setw(8) << "trades" << " | " << std::setw(8) << "mean" << " | " << std::setw(8) << "std.dev." << " | " << std::setw(12) << "formula" << " | " << std::setw(8) << "skewness" << " | " << std::setw(8) << "kurtosis" << std::endl; std::cout << std::string(78, '-') << std::endl; } // the actual replication error computation void compute(Size nTimeSteps, Size nSamples); private: Time maturity_; PlainVanillaPayoff payoff_; Real s0_; Volatility sigma_; Rate r_; Real vega_; }; // The key for the MonteCarlo simulation is to have a PathPricer that // implements a value(const Path& path) method. // This method prices the portfolio for each Path of the random variable class ReplicationPathPricer : public PathPricer<Path> { public: // real constructor ReplicationPathPricer(Option::Type type, Real strike, Rate r, Time maturity, Volatility sigma) : type_(type), strike_(strike), r_(r), maturity_(maturity), sigma_(sigma) { QL_REQUIRE(strike_ > 0.0, "strike must be positive"); QL_REQUIRE(r_ >= 0.0, "risk free rate (r) must be positive or zero"); QL_REQUIRE(maturity_ > 0.0, "maturity must be positive"); QL_REQUIRE(sigma_ >= 0.0, "volatility (sigma) must be positive or zero"); } // The value() method encapsulates the pricing code Real operator()(const Path& path) const; private: Option::Type type_; Real strike_; Rate r_; Time maturity_; Volatility sigma_; }; // Compute Replication Error as in the Derman and Kamal's research note int main(int, char* []) { try { boost::timer timer; std::cout << std::endl; Time maturity = 1.0/12.0; // 1 month Real strike = 100; Real underlying = 100; Volatility volatility = 0.20; // 20% Rate riskFreeRate = 0.05; // 5% ReplicationError rp(Option::Call, maturity, strike, underlying, volatility, riskFreeRate); Size scenarios = 50000; Size hedgesNum; hedgesNum = 21; rp.compute(hedgesNum, scenarios); hedgesNum = 84; rp.compute(hedgesNum, scenarios); double seconds = timer.elapsed(); Integer hours = int(seconds/3600); seconds -= hours * 3600; Integer minutes = int(seconds/60); seconds -= minutes * 60; std::cout << " \nRun completed in "; if (hours > 0) std::cout << hours << " h "; if (hours > 0 || minutes > 0) std::cout << minutes << " m "; std::cout << std::fixed << std::setprecision(0) << seconds << " s\n" << std::endl; return 0; } catch (std::exception& e) { std::cerr << e.what() << std::endl; return 1; } catch (...) { std::cerr << "unknown error" << std::endl; return 1; } } /* The actual computation of the Profit&Loss for each single path. In each scenario N rehedging trades spaced evenly in time over the life of the option are carried out, using the Black-Scholes hedge ratio. */ Real ReplicationPathPricer::operator()(const Path& path) const { Size n = path.length()-1; QL_REQUIRE(n>0, "the path cannot be empty"); // discrete hedging interval Time dt = maturity_/n; // For simplicity, we assume the stock pays no dividends. Rate stockDividendYield = 0.0; // let's start Time t = 0; // stock value at t=0 Real stock = path.front(); // money account at t=0 Real money_account = 0.0; /************************/ /*** the initial deal ***/ /************************/ // option fair price (Black-Scholes) at t=0 DiscountFactor rDiscount = std::exp(-r_*maturity_); DiscountFactor qDiscount = std::exp(-stockDividendYield*maturity_); Real forward = stock*qDiscount/rDiscount; Real stdDev = std::sqrt(sigma_*sigma_*maturity_); boost::shared_ptr<StrikedTypePayoff> payoff( new PlainVanillaPayoff(type_,strike_)); BlackCalculator black(payoff,forward,stdDev,rDiscount); // sell the option, cash in its premium money_account += black.value(); // compute delta Real delta = black.delta(stock); // delta-hedge the option buying stock Real stockAmount = delta; money_account -= stockAmount*stock; /**********************************/ /*** hedging during option life ***/ /**********************************/ for (Size step = 0; step < n-1; step++){ // time flows t += dt; // accruing on the money account money_account *= std::exp( r_*dt ); // stock growth: stock = path[step+1]; // recalculate option value at the current stock value, // and the current time to maturity rDiscount = std::exp(-r_*(maturity_-t)); qDiscount = std::exp(-stockDividendYield*(maturity_-t)); forward = stock*qDiscount/rDiscount; stdDev = std::sqrt(sigma_*sigma_*(maturity_-t)); BlackCalculator black(payoff,forward,stdDev,rDiscount); // recalculate delta delta = black.delta(stock); // re-hedging money_account -= (delta - stockAmount)*stock; stockAmount = delta; } /*************************/ /*** option expiration ***/ /*************************/ // last accrual on my money account money_account *= std::exp( r_*dt ); // last stock growth stock = path[n]; // the hedger delivers the option payoff to the option holder Real optionPayoff = PlainVanillaPayoff(type_, strike_)(stock); money_account -= optionPayoff; // and unwinds the hedge selling his stock position money_account += stockAmount*stock; // final Profit&Loss return money_account; } // The computation over nSamples paths of the P&L distribution void ReplicationError::compute(Size nTimeSteps, Size nSamples) { QL_REQUIRE(nTimeSteps>0, "the number of steps must be > 0"); // hedging interval // Time tau = maturity_ / nTimeSteps; /* Black-Scholes framework: the underlying stock price evolves lognormally with a fixed known volatility that stays constant throughout time. */ Calendar calendar = TARGET(); Date today = Date::todaysDate(); DayCounter dayCount = Actual365Fixed(); Handle<Quote> stateVariable( boost::shared_ptr<Quote>(new SimpleQuote(s0_))); Handle<YieldTermStructure> riskFreeRate( boost::shared_ptr<YieldTermStructure>( new FlatForward(today, r_, dayCount))); Handle<YieldTermStructure> dividendYield( boost::shared_ptr<YieldTermStructure>( new FlatForward(today, 0.0, dayCount))); Handle<BlackVolTermStructure> volatility( boost::shared_ptr<BlackVolTermStructure>( new BlackConstantVol(today, calendar, sigma_, dayCount))); boost::shared_ptr<StochasticProcess1D> diffusion( new BlackScholesMertonProcess(stateVariable, dividendYield, riskFreeRate, volatility)); // Black Scholes equation rules the path generator: // at each step the log of the stock // will have drift and sigma^2 variance PseudoRandom::rsg_type rsg = PseudoRandom::make_sequence_generator(nTimeSteps, 0); bool brownianBridge = false; typedef SingleVariate<PseudoRandom>::path_generator_type generator_type; boost::shared_ptr<generator_type> myPathGenerator(new generator_type(diffusion, maturity_, nTimeSteps, rsg, brownianBridge)); // The replication strategy's Profit&Loss is computed for each path // of the stock. The path pricer knows how to price a path using its // value() method boost::shared_ptr<PathPricer<Path> > myPathPricer(new ReplicationPathPricer(payoff_.optionType(), payoff_.strike(), r_, maturity_, sigma_)); // a statistics accumulator for the path-dependant Profit&Loss values Statistics statisticsAccumulator; // The Monte Carlo model generates paths using myPathGenerator // each path is priced using myPathPricer // prices will be accumulated into statisticsAccumulator MonteCarloModel<SingleVariate,PseudoRandom> MCSimulation(myPathGenerator, myPathPricer, statisticsAccumulator, false); // the model simulates nSamples paths MCSimulation.addSamples(nSamples); // the sampleAccumulator method // gives access to all the methods of statisticsAccumulator Real PLMean = MCSimulation.sampleAccumulator().mean(); Real PLStDev = MCSimulation.sampleAccumulator().standardDeviation(); Real PLSkew = MCSimulation.sampleAccumulator().skewness(); Real PLKurt = MCSimulation.sampleAccumulator().kurtosis(); // Derman and Kamal's formula Real theorStD = std::sqrt(M_PI/4/nTimeSteps)*vega_*sigma_; std::cout << std::fixed << std::setw(8) << nSamples << " | " << std::setw(8) << nTimeSteps << " | " << std::setw(8) << std::setprecision(3) << PLMean << " | " << std::setw(8) << std::setprecision(2) << PLStDev << " | " << std::setw(12) << std::setprecision(2) << theorStD << " | " << std::setw(8) << std::setprecision(2) << PLSkew << " | " << std::setw(8) << std::setprecision(2) << PLKurt << std::endl; }