# Calibration of Merton's (1976) # Jump Diffusion Model # via Fast Fourier Transform # import math import numpy as np np.set_printoptions(suppress=True, formatter={'all': lambda x: '%5.3f' % x}) import pandas as pd import scipy.optimize as sop import matplotlib.pyplot as plt import matplotlib as mpl mpl.rcParams['font.family'] = 'serif' from M76_valuation_FFT import M76_value_call_FFT # # Market Data from www.eurexchange.com # as of 30. September 2014 # h5 = pd.HDFStore('08_m76/option_data.h5', 'r') data = h5['data'] # European call & put option data (3 maturities) h5.close() S0 = 3225.93 # EURO STOXX 50 level r = 0.0005 # ECB base rate # Option Selection tol = 0.02 options = data[(np.abs(data['Strike'] - S0) / S0) < tol] # # Error Function # def M76_error_function_FFT(p0): ''' Error Function for parameter calibration in M76 Model via Carr-Madan (1999) FFT approach. Parameters ========== sigma: float volatility factor in diffusion term lamb: float jump intensity mu: float expected jump size delta: float standard deviation of jump Returns ======= RMSE: float root mean squared error ''' global i, min_RMSE sigma, lamb, mu, delta = p0 if sigma < 0.0 or delta < 0.0 or lamb < 0.0: return 500.0 se = [] for row, option in options.iterrows(): T = (option['Maturity'] - option['Date']).days / 365. model_value = M76_value_call_FFT(S0, option['Strike'], T, r, sigma, lamb, mu, delta) se.append((model_value - option['Call']) ** 2) RMSE = math.sqrt(sum(se) / len(se)) min_RMSE = min(min_RMSE, RMSE) if i % 50 == 0: print '%4d |' % i, np.array(p0), '| %7.3f | %7.3f' % (RMSE, min_RMSE) i += 1 return RMSE def generate_plot(opt, options): # # Calculating Model Prices # sigma, lamb, mu, delta = opt options['Model'] = 0.0 for row, option in options.iterrows(): T = (option['Maturity'] - option['Date']).days / 365. options.loc[row, 'Model'] = M76_value_call_FFT(S0, option['Strike'], T, r, sigma, lamb, mu, delta) # # Plotting # mats = sorted(set(options['Maturity'])) options = options.set_index('Strike') for i, mat in enumerate(mats): options[options['Maturity'] == mat][['Call', 'Model']].\ plot(style=['b-', 'ro'], title='%s' % str(mat)[:10]) plt.ylabel('option value') plt.savefig('../images/08_m76/M76_calibration_3_%s.pdf' % i) if __name__ == '__main__': # # Calibration # i = 0 # counter initialization min_RMSE = 100 # minimal RMSE initialization p0 = sop.brute(M76_error_function_FFT, ((0.075, 0.201, 0.025), (0.10, 0.401, 0.1), (-0.5, 0.01, 0.1), (0.10, 0.301, 0.1)), finish=None) # p0 = [0.15, 0.2, -0.3, 0.2] opt = sop.fmin(M76_error_function_FFT, p0, maxiter=500, maxfun=750, xtol=0.000001, ftol=0.000001)