## hngarchSim - # Simulate a Heston Nandi Garch(1,1) Process: # Symmetric Model - Parameters: model = list(lambda = 4, omega = 8e-5, alpha = 6e-5, beta = 0.7, gamma = 0, rf = 0) ts = hngarchSim(model = model, n = 500, n.start = 100) par(mfrow = c(2, 1), cex = 0.75) ts.plot(ts, col = "steelblue", main = "HN Garch Symmetric Model") grid() ## hngarchFit - # HN-GARCH log likelihood Parameter Estimation: # To speed up, we start with the simulated model ... mle = hngarchFit(model = model, x = ts, symmetric = TRUE) mle plot(mle,) ## summary.hngarch - # HN-GARCH Diagnostic Analysis: par(mfrow = c(3, 1), cex = 0.75) summary(mle) ## hngarchStats - # HN-GARCH Moments: hngarchStats(mle$model)